일반물리실험 - 힘의 평형 및 분해
1. 목적
여러 개의 외력을 받고 있는 물체가 평형 상태에 있을 때에 평형 조건을 실험하여 힘의 합력과 평형력을 알아본다. 또한 이와 반대로 합했을 때 원해 힘과 동일한 효과를 갖는 두 개의 힘을 찾아낸다.
2.원리
벡터는 반드시 크기와 방향 둘 다에 의해 정해지는 양이다. 힘은 백터량의 한 예다. 어떤 물체에 작용하는 힘을 기술하려면 작용하는 힘의 방향과 크기 둘 다 정해 주어야 한다.
- 힘의 합성
힘을 합성할 대에는 각각의 힘의 작용점을 한 곳에 일치시킨 다음, 각각의 힘의 벡터의 합을 구하여 합성된 한 힘을 구한다. 이러한 작업을 힘의 합성이라고 하며, 합성된 힘을 합력 혹은 알짜힘이라고 한다.
2차원 이상의 벡터합을 구할 때에는 두 벡터의 시작점을 똑같이 맞춘 다음 두 벡터를 한 변으로 하는 평행사변형을 그려야 한다. 이런 식으로 벡터합을 구하는 것을 평행사변형법이라고 한다. 또한 벡터합을 구할 때에는 어떤 벡터를 먼저 더하는지는 결과에 영향을 미치지 않는다.
또한 힘을 합성할 때에는 벡터들이 놓여있는 평면 혹은 공간에 좌표를 도입하는 방법도 있다.
옆의 그림과 같이 두 힘의 작용점을 원점으로 하는 좌표 평면을 도힙하면, 각 힘의 크기와 방향을 좌표로 나타낼 수 있다. 두 힘을 나타내는 좌표의 x 성분은 x 성분끼리, y 성분은, y성분끼리 더하여 두 힘의 합력을 쉽게 구할 수 있다. 만약 힘이 3차원 공간상에서 작용한다면 z축을 포함하는 좌표공간을 도입하면 된다.
- 힘의 분해
힘은 여러 개의 임의의 분력으로 분해할 수도 있다. 힘의 분해는 힘을 합성하는 반대 과정을 따르면 된다.
옆의 그림은 F 라는 힘 벡터를 F 와 F 의 두 분력벡터로 분해한 것을 보여주고 있다. 우리는 앞으로 계산상의 편의를 위해 혹은 힘이 물체에 가하는 영향을 이해하기 위해 종종 힘을 분해하게 된다. 그리고 분해를 할 때에는 일반적으로 좌표축을 도입해서, 좌표축과 일치하는 방향으로 힘을 나누게 된다.
-세 힘의 평형
.... |