유체역학 실험 - 베르누이방정식에 관한 실험
유체 유동에 관한 공학적 문제들은 대부분 연속방정식(continuity equation), 베르누이방정식(Bernoulli equation), 충격량-운동량의 원리(impulse-momentum principle)를 사용하여 해석 할 수 있다. 본유체역학 실험에서는 베르누이방정식에 관한 실험, 관마찰계수 측정 실험, 유량측정 실험, 관내 유속분포 측정 실험, 충격량-운동량원리에 간한 실험 등을 통하여 이들에 대한 이해와 해석 능력을 도모하고자 한다.
1. 실험 목적
베르누이방정식은 유속 및 유량의 측정, 관로유동 해석 등 유체역하고가 관련된 대부분의 문제를 해결하는 데 출발점이 되는 기본 방정식이다.
본실험의 목적은 베르누이방정식 및 이와 관련하여 유체유동 중에 일어나는 에너지손실, 다시 말하면 역학적 에너지손실 등에 대한 개념을 정확히 이해하는 데 있다.
2. 이 론
그림 7-1에서와 같이 비압축성 이상유체가 정상유동을 하고 있다고 가정하자. 그러면 임의의 유선(또는 미소단면의 유관)1-2상에서는 다음과 같은 베르누이방정식이 성립한다. 즉,
(7-1)
여기서 p는 유체의 압력, v는 유체의 속도, 는 유체의 비중량, z는 임의의 수평 기준선으로부터의 높이, 그리고 g는 중력가속도를 나타내고, 하첨자 1, 2는 각각 유선상의 점 1, 2를 표시한다.
식(7-1)의 각 항은 길이의 차원을 가지고 있으며, 유체의 단위 중량당 압력에너지(p/), 운동에너지(v2/2g), 그리고 위치에너지(Z)를 나타낸다. 따라서 식(7-1)은 비압축성 이상유체가 흐르는 동안 역학적 에너지의 총합이 항상 일정하게 유지된다고 역학적 에너지 보존법칙을 기술하고 있다.
식(7-1)은 이상유체인 경우에 해당되며, 실제 유체에서는 유체가 유동할 때 유체 점성에 의하여 역학적 에너지손실이 발생하므로 전수두(total head)H는 감소하게 된다. 따라서, 실체 유체에서는 식(7-1)이 다음과 같이 수정된다.
.... |