베르누이 정리 실험
●실험 목적
본 기기는 베르누이 방정식을 이해하기 위한 실험장치로써 베르누이방정식은 유속 및 유량의 측정, 관로유동 해석등 유체역학과 관련된 대부분의 문제를 해결하는데 출발점이 되는 기본 방정식이다.
본 실험의 목적은 베르누이 방정식 및 이와 관련하여 유체유동 중에 일어나는 에너지 손실, 다시 말하면 역학적 에너지 손실 등에 대한 개념을 이해하는데 있다.
●베르누이 방정식
(1) 베르누이방정식의 유도 방법
① 뉴턴의 제2법칙 으로부터 유도하는 방법
② 에너지 보존법칙 으로부터 유도하는 방법
의 2가지가 있으며 본서에서는 보다 쉬운 방법인 ②의 방법을 사용하여 유도한다.
에너지 보존의 법칙에 의한 유도
※에너지 보존법칙(일-에너지 정리)
질점에 작용하는 알짜힘이 한 일은 질점의 운동에너지의 변화와 같다
오른쪽 그림에서 (a)의 상태에서 일을 하여 (b)의 상태로 되었다.
즉, (a)그림에서 왼쪽 아래 부분에 해당하는 유체가 일을 받아
(b)그림의 오른쪽 위의 상태로 변화되었다.
▶액체의 경우 사용하는 베르누이 방정식의 형테
수두단의로 표현한 베르누이 방정식
→앞 절에서 유도한 식에서 각항을 비중량 (gamma)로 나누면 다음과 같이 얻어 진다.
(2)
베르누이방정식의 의미
① 수두로 나타낸 방정식의 각 항은 단위가 [m]이다. 이는 [N· m/N]=[J/N]이 된다.
즉,각 항은 단위중량당의 유체가 가지는 에너지를 나타내고 있다.
② 유선을 따라 운동하는 유체입자가 가지는 에너지의 총합은 유선상의 임의의 점에서 항상 일정 불변하다.
→[압력E + 속도E +위치E = 일정]의 형태로 구성되어 있다.
이는 에너지 보존법칙 [포텐셜E(위치E+탄성E)+속도E= 일정]과 같은 형태로 되어있다.
③ 따라서, 베르누이 방정식을 에너지 방정식이라고 부르기도
.... |